Mathematics Higher Level	Name
Paper 1	
Date:	
2 hours	

Instructions to candidates

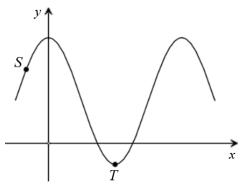
- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A (56 marks)

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.


1. [Maximum mark: 5]

Given that $px^3 + qx^2 - 9x + 18$ is exactly divisible by (x+2)(x-3), find the value of p and the value of q.

_	

2. [Maximum mark: 6]

The diagram below shows a curve with equation $y = 2 + k \cos x$, defined for $-\frac{\pi}{2} \le x \le \frac{5\pi}{2}$.

The point S lies on the curve and has coordinates $\left(-\frac{\pi}{3},\frac{7}{2}\right)$. The point T with coordinates $\left(a,b\right)$ is the minimum point.

(a) Show that k = 3. [2]

(b) Hence, find the value of a and the value of b. [4]

• •	• •	 • •	• •		 	 	 	 • •	 • •	• •	• •	 	 	 • •	• •	 	 • •	 	 	• •	• • •	 	 • •	 	 	• •	• •		 	• •	• • •	
		 			 	 	 	 	 			 	 	 		 	 	 	 		• • •	 	 	 	 			• • •	 		• • •	
		 			 	 	 	 	 			 	 	 		 	 	 	 		• • •	 	 	 	 			• •	 		• • •	
		 		• • •	 	 	 	 	 			 ٠.	 	 		 	 ٠.	 • •	 		• • •	 	 	 	 		٠.	• • •	 			
		 		• • •	 	 	 	 	 			 ٠.	 	 		 	 ٠.	 • •	 		• • •	 	 	 	 		٠.	• • •	 			
		 		• • •	 	 	 	 	 			 	 	 		 	 	 • •	 		• • •	 	 	 	 				 			
		 			 	 	 	 	 			 	 	 		 	 	 	 			 	 	 	 				 			 ٠

3. [Maximum mark: 6]

A geometric series has a positive common ratio r. The series has a sum to infinity of 9 and the sum of the first two terms is 5. Find the first three terms of the series.

4. [Maximum mark: 5]

The probability density function for a random variable X is given by

$$f(x) = \begin{cases} cxe^{-x}, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$
 where c is a real number.

Find the value of c.

[4]

5. [Maximum mark: 7]

Consider the equation $ax^2 + 7x - 2a = 0$ that has two distinct solutions for x.

(a) Given that x = -3 is a solution of $ax^2 + 7x - 2a = 0$, find the value of a and the other solution for x.

Hence, express $\frac{5x-7}{ax^2+7x-2a}$ as the sum of two fractions. (b) [3]

6. [Maximum mark: 7]

A curve has equation $4xy - y^2 - x^3 = 0$ for x > 0, y > 0. The graph of the curve has a vertical tangent at point R. Find the coordinates of R.

7. [Maximum mark: 7]

Prove by mathematical induction that $2^n > 2n+1$ for all $n \ge 3$, $n \in \mathbb{Z}$.

Solve for *x* in each of the following equations:

(a)
$$\log_2(5x^2 - x - 2) = 2 + 2\log_2 x$$
. [3]

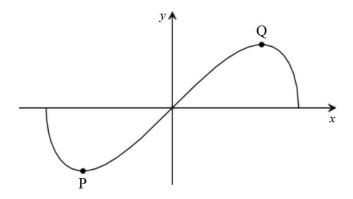
- 9 -

(b)
$$3^{x+1} = 2^{2-x}$$
. Express the answer in the form $\frac{\ln a}{\ln b}$, $a,b \in \mathbb{Q}$. [4]

9. [Maximum mark: 6]

The coefficients of x^2 in the expansions $(1+x)^{2n}$ and $(1+15x^2)^n$ are equal. Given that n is a positive integer, find the value of n.

٠	
I	


Do **not** write solutions on this page.

Section B (54 marks)

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 24]

The diagram shows the graph of the function defined by $f(x) = x\sqrt{1-x^2}$, $-1 \le x \le 1$.

The function has a minimum at the point P and a maximum at point Q.

(a) Show that
$$f'(x) = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$
. [4]

- (b) Find the coordinates of P, and the coordinates of Q. [4]
- (c) Find the total area enclosed by the graph of f and the x-axis. [5]
- (d) The graph of f is rotated 2π radians about the x-axis, forming a solid. Show that the total volume of this solid is $\frac{4\pi}{15}$. [5]

The function g is defined as g(x) = 2f(x-3).

- (e) Determine the domain and the range of *g*. [4]
- (f) Another solid is formed when the graph of g is rotated 2π radians about the x-axis. Write down the total volume of this solid. [2]

Do not write solutions on this page.

11. [Maximum mark: 17]

Consider the points A(8, -4, 5), B(5, -3, 4) and C(3, -2, 5).

(a) Find the vector
$$\overrightarrow{AC} \times \overrightarrow{AB}$$
. [4]

- (b) Determine the area of triangle ABC. [3]
- (c) Plane Π_1 contains triangle ABC. Show that a Cartesian equation for Π_1 is 2x+5y-z=-9

A second plane Π_2 is defined by the Cartesian equation Π_2 : x+by+cz=-6, where b and c are constants. Plane Π_2 is perpendicular to plane Π_1 and the two planes intersect at a line with the Cartesian equation $\frac{x+1}{-16} = \frac{y+1}{5} = \frac{z-2}{-7}$.

(d) Find the value of b, and the value of c. [4]

A third plane, Π_3 , is defined by the Cartesian equation Π_3 : x+2y-2z=9.

(e) Given that Π_1 , Π_2 and Π_3 intersect at point P, find the coordinates of P. [3]

12. [Maximum mark: 13]

Consider the complex number $w = \cos \theta + i \sin \theta$.

(a) Show that
$$w^n + \frac{1}{w^n} = 2\cos n\theta$$
 where $n \in \mathbb{Z}^+$. [3]

(b) Hence, write down an expression, in terms of
$$\cos \theta$$
, for $\left(w + \frac{1}{w}\right)^5$. [1]

(c) Show that
$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$
. [4]

(d) Hence, find all the solutions of $\cos 5\theta + 5\cos 3\theta + 12\cos \theta = 0$ in the interval $0 \le \theta < 2\pi$. [5]